Task Transfer by Preference-Based Cost Learning
نویسندگان
چکیده
منابع مشابه
Transfer Learning by Discovering Latent Task Parametrizations
We present a framework that is able to discover the latent factors that parametrize a family of related tasks from data. The resulting model is able to rapidly identify the dynamics of a new task instance, allowing an agent to flexibly adapt to task variations.
متن کاملDeep Model Based Transfer and Multi-Task Learning Deep Model Based Transfer and Multi-Task Learning for Biological Image Analysis
A central theme in learning from image data is to develop appropriate representations for the specific task at hand. Traditional methods used handcrafted local features combined with high-level image representations to generate image-level representations. Thus, a practical challenge is to determine what features are appropriate for specific tasks. For example, in the study of gene expression p...
متن کاملMulti-task Preference learning with Gaussian Processes
We present an EM-algorithm for the problem of learning user preferences with Gaussian processes in the context of multi-task learning. We validate our approach on an audiological data set and show that predictive results for sound quality perception of normal hearing and hearingimpaired subjects, in the context of pairwise comparison experiments, can be improved using the hierarchical model.
متن کاملSelective Transfer Between Learning Tasks Using Task-Based Boosting
The success of transfer learning on a target task is highly dependent on the selected source data. Instance transfer methods reuse data from the source tasks to augment the training data for the target task. If poorly chosen, this source data may inhibit learning, resulting in negative transfer. The current most widely used algorithm for instance transfer, TrAdaBoost, performs poorly when given...
متن کاملPreference-Based Policy Learning
Many machine learning approaches in robotics, based on reinforcement learning, inverse optimal control or direct policy learning, critically rely on robot simulators. This paper investigates a simulatorfree direct policy learning, called Preference-based Policy Learning (PPL). PPL iterates a four-step process: the robot demonstrates a candidate policy; the expert ranks this policy comparatively...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence
سال: 2019
ISSN: 2374-3468,2159-5399
DOI: 10.1609/aaai.v33i01.33012471